A sequence of connections and a characterization of Kähler manifolds
نویسندگان
چکیده
We study a sequence of connections which is associated with a Riemannian metric and an almost symplectic structure on a manifold M according to a construction in [5]. We prove that if this sequence is trivial (i.e. constant) or 2-periodic, then M has a canonical Kähler structure.
منابع مشابه
Yang-mills Bar Connections over Compact Kähler Manifolds
In this note we introduce a Yang-Mills bar equation on complex vector bundles E provided with a Hermitian metric over compact Hermitian manifolds. According to the Koszul-Malgrange criterion any holomorphic structure on E can be seen as a solution to this equation. We show the existence of a non-trivial solution to this equation over compact Kähler manifolds as well as a short time existence of...
متن کاملClassification Theorem for a Class of Flat Connections and Representations of Kähler Groups
The paper presents a classification theorem for the class of flat connections with triangular (0,1)-components on a topologically trivial complex vector bundle over a compact Kähler manifold. As a consequence we obtain several results on the structure of Kähler groups, i.e., the fundamental groups of compact Kähler manifolds.
متن کاملAn Introduction to Complex, Kähler and Locally Conformal Kähler Geometry
In this note we briefly summarize the necessary tools from complex manifold theory in order to give an introduction to the basic results about Kähler and locally conformal Kähler manifolds. We look at many equivalent definitions of all three types of manifolds and examine in detail the parallels which arise in the theories. These parallels include the compatibility of metrics and fundamental 2-...
متن کاملNatural Lie Algebra Bundles on Rank Two S-kähler Manifolds, Abelian Varieties and Moduli of Curves
We study the general properties of rank two s-Kähler manifolds. We present several natural examples of manifolds which can be equipped with this structure with various levels of rigidity: complex tori and abelian varieties, cotangent bundles of smooth manifolds and moduli of pointed elliptic curves. We show how one can obtain natural bundles of Lie algebras on such manifolds, with fibres isomor...
متن کاملGeometry of Quaternionic Kähler connections with torsion
The target space of a (4,0) supersymmetric two-dimensional sigma model with Wess-Zumino term has a connection with totally skew-symmetric torsion and holonomy contained in Sp(n).Sp(1), QKT-connection. We study the geometry of QKT-connections. We find conditions to the existence of a QKT-connection and prove that if it exists it is unique. Studying conformal transformations we obtain a lot of (c...
متن کامل